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ABSTRACT
With the boundary element method (BEM), the velocity-vorticity formulation is introduced and the
overall Navier–Stokes problem is partitioned into the kinetic and kinematic parts. For a general
viscous flow, the kinetics is formulated as a differential nonlinear vorticity diffusion-convective
transport equation, whilst the kinematics of the fluid flow computation is governed by the Biot–
Savart integral representation. This work presents an overview of the numerical simulation of transport
phenomena in fluid flow using a different type of Green’s fundamental solutions in the context of BEM.
The kinetic diffusion-convective partial differential equations (PDEs) represent, respectively, mixed
elliptic-hyperbolic or parabolic-hyperbolic types of PDEs, governing the steady or time dependent
transport phenomena in fluid flow, e.g. transfer of heat energy, momentum, vorticity, etc. Applying
the singular integral representations has important numerical and physical aspects as a consequence
of the fundamental solutions applied. The solution algorithm is based on improved macro-elements
concept using mixed-boundary elements. The numerical model uses quadratic approximation for all
field functions and linear approximation of the fluxes over space and constant approximation over time
for all field functions.
Keywords: computational fluid dynamics, boundary element method (BEM), macro-element model,
Green’s fundamental solutions, high Rayleigh number, natural convection.

1 INTRODUCTION
The current literature contains a variety of differing and competing numerical models for
solving transport problems governed by the Navier–Stokes equations. A number of the
numerical models can be categorised according to the mathematical formulations they use,
e.g. finite difference/finite volume (FVM), finite element (FEM) and boundary element
(BEM) models [1], [7], [10], [13], [15], [18].

The key problem with all numerical models is how to satisfactorily solve the kinetics of
the transport problems governed by the diffusion-convection equations. The characteristics
of the diffusion-convection equations vary considerably from point to point in the flow
field due to the local Reynolds or Peclet number values that physically represent the
relationship between the diffusion and convection of individual flow quantities. The mixed
elliptic-parabolic-hyperbolic character of the underlying equations makes the numerical fluid
dynamics more difficult than numerically solving the transport phenomena in solids. This is
especially true for flows characterised by high Reynolds or Peclet numbers, when convection
becomes dominant at the expense of diffusion, or when the hyperbolic character of the
equation predominates in its ellipticity/parabolicity.

The diffusion-convection character of the kinetic transport equations, means that when
the hyperbolicity prevails in the ellipticity/parabolicity of the PDE, the convection dominated
flows are subjected to numerical instability. Therefore, when using a coarse mesh any given
numerical solution model which does not take the multiscale nature of a transport problem
into account may generate unstable results. To suppress such instabilities which are known in
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all domain type numerical models, such as FVM and FEM, first or higher order upwinding
schemes, the residual free bubble (RFB) method etc., have to be considered to stabilise the
numerical solution. Although this increases the stability of the numerical scheme, at the same
time it also introduces artificial diffusivity, resulting in a non-physical numerical solution.

Since the boundary integral representations are based on the use of an appropriate
fundamental solution, the free space Green’s function, which incorporates more or less
of the physics of the transport phenomenon, such as accumulation, diffusion, convection
and generation of the field function, the stable and accurate description of different flow
components with diverse length scales can be accommodated and treated much more
accurately in a physically and mathematically justified manner.

2 GOVERNING CONSERVATION EQUATIONS
In velocity-vorticity formulation the noncompressible viscous fluid motion computation
procedure can be split into its kinetics and kinematics [1], [5], [17], [20], [24] , [25]. The
kinematics deals with the relationship and restriction within the velocity field vi(rj , t) at
any given instant in time and the vorticity field ωi(rj , t) at the same instant. For the two-
dimensional plane motion the kinematics is given by the following vector elliptic Poisson
equation for the velocity vector,

∂2vi
∂xj∂xj

+ eij
∂ω

∂xj
= 0, (1)

where eij (i, j = 1, 2) is the permutation unit symbol (e12 = +1, e21 = −1, e11 = e22 = 0).
For the known vorticity the corresponding velocity vector can be determined by solving
eqn (1), provide that appropriate boundary conditions for the velocity are prescribed, i.e.
normal and tangential component of the velocity vector. The kinetic aspects of the fluid
motion and energy transfer are governed by the scalar vorticity and temperature diffusion-
convection transport equations,

∂ω

∂t
+
∂vjω

∂xj
= νo

∂2ω

∂xj∂xj
− 1

ρo
eij

∂

∂xj
(ρgi + fni ) , (2)

∂T

∂t
+
∂vjT

∂xj
= ao

∂2T

∂xj∂xj
+

1

co
(IT + Sn). (3)

These describe the redistribution of the vorticity/temperature in the fluid domain by diffusion
and convection, whilst the nonhomogeneous nonlinear terms fni and Sn, act as an additional
source or strengthen terms because of the nonlinear transport properties. The notations ν,
ρ, c and a = k/c stand for the kinematic viscosity, mass density, specific isobaric heat per
unit volume and thermal diffusivity, where k is the heat conductivity, gi is the gravitational
acceleration vector, and IT is the heat source per unit volume.

3 GENERAL SCALAR TRANSPORT DIFFUSION-CONVECTIVE EQUATION
Let us consider a general unsteady state nonlinear diffusion-convective equation describing
the time dependent transfer of an arbitrary scalar field function u(~r, t), which can be
equated to vorticity, temperature, concentration, etc., in an isotropic solenoidal fluid flow,
e.g. divergence free, defined in a solution space R(s, t) = Ω(s)× I(to, t) representing the
product of the domain Ω(s) bounded by the boundary Γ(S) and the time interval I(to, t),
e.g. given in indicial notation form for a right-handed Cartesian coordinate system

∂

∂xj

(
k
∂u

∂xj

)
−c
(
∂vju

∂xj
+
∂u

∂t

)
+Iu = 0 in R, (4)
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where ~v(~r, t) is the local instantaneous velocity field. The material properties of the media,
e.g. capacity per unit volume c = c(~r, u) and conductivity k = k(~r, u), are, as a rule, a
monotonic field function and space dependent relation, while Iu(~r, u) stands for a source
or sink term.

Eqn (4) represents a parabolic initial-boundary values problem, thus some boundary
and initial conditions have to be specified to complete the mathematical description of the
problem, e.g. Dirichlet, Neumann or Cauchy type boundary conditions have to be prescribed
on the part of the boundary Γ = Γ1 + Γ2 + Γ3 defined by the outward unit normal vector
ni(S),

u = u on RΓ1
= Γ1 × I,

∂u

∂n
= q on RΓ2

= Γ2 × I, (5)

∂u

∂n
= −α

k
(u− uf ) on RΓ3

= Γ3 × I,

where α is a transfer coefficient between the fluid flow surface and the surrounding ambient
at the reference value uf , whilst the initial conditions are

u = uo in Ω at t = to. (6)

The material properties and the velocity field can be given as the sum of a homogeneous
constant dominant and the variable part over each macroelement, e.g.,

c = co + c̃, k = ko + k̃, vi = vio + ṽi and ao =
ko
co
, (7)

enabling eqn (4) to be split into the homogeneous linear and nonhomogeneous nonlinear part,
thus,

ao
∂2u

∂xj∂xj
−
(
∂vjou

∂xj
+
∂u

∂t

)
+
∂γj
∂xj

+ γ = 0. (8)

The nonlinear pseudo body force terms γj and γ include the perturbed diffusion
and convection flux, nonlinearities in transport properties, source term, and nonlinear
accumulation contribution

γj =
1

co

(
k̃
∂u

∂xj
− cvju+ covjou

)
, γ =

1

co

(
vju

∂c

∂xj
− c̃ ∂u

∂t
+ Iu

)
. (9)

Eqn (8) incorporates the characteristic physics of the transport phenomenon in fluid flow such
as accumulation, diffusion, convection, whilst the nonlinear source terms act as additional
generation and strengthening of the conservation field function.

Different Green’s fundamental solutions can now be applied to capture more or less
of the physics of the transport phenomena [3], [4], [6], [11], [12], e.g. accumulation,
diffusion only, or both processes, that is, diffusion and convection, respectively, resulting
in different numerical schemes for the stability and the accuracy. Since the fundamental
solutions only consider the linear transport phenomenon, an appropriate selection of a
linear differential operator L[ · ] is of major importance in establishing a stable and accurate
singular integral representation corresponding to the original differential diffusion convective
transport equation, which is especially true for the transport phenomena characterised by the
high Peclet number values. For example, in the steady state the linear elliptic differential
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operator can capture just the diffusion or both the diffusion and convection fluxes, and
the accumulation is zero. In the unsteady state, however, the linear parabolic differential
operator can be adjusted for accumulation and diffusion, or for accumulation, diffusion
and convection, and the nonhomogeneous terms deal with transport effects which are not
captured by the differential operator. Thus, the following general mathematical statement can
be formulated:

L [u ] +
∂bj
∂xj

+ b =



ao
∂2u

∂xj∂xj
+
∂bj
∂xj

+ b = 0,

ao
∂2u

∂xj∂xj
− ∂voju

∂xj
+
∂bj
∂xj

+ b = 0,

ao
∂2u

∂xj∂xj
− ∂u

∂t
+
∂bj
∂xj

+ b = 0,

ao
∂2u

∂xj∂xj
− ∂u

∂t
− ∂voju

∂xj
+
∂bj
∂xj

+ b = 0.

(10)

To develop the singular integral representation for eqn (10), it is necessary to know the
Green’s fundamental solutions u?( · ) = u?(ξ, s; tF , t) satisfying the adjoint equations,

L? [u?( · )] + δ( · ) =



∂2u?

∂xj∂xj
+ δ = 0,

ao
∂2u?

∂xj∂xj
+
∂voju

?

∂xj
+ δ = 0,

ao
∂2u?

∂xj∂xj
+
∂u?

∂t
+ δ = 0,

ao
∂2u?

∂xj∂xj
+
∂u?

∂t
+
∂voju

?

∂xj
+ δ = 0,

(11)

where L?[ · ] denotes the adjoint differential linear operator to L[ · ] and δ( · ) is the Dirac
delta function, which are given by the following expressions for the two-dimensional plane
geometry,

u?( · ) =



1

2π
ln

(
1

r

)
,

1

2πao
Ko (µr) exp

(
vojrj
2ao

)
, µ =

vo
2ao

,

1

4πaoτ
exp

(
− r2

4aoτ

)
,

1

4πaoτ
exp

(
− r2

4aoτ
− v2

oτ

4ao
+
vojrj
2ao

)
,

(12)

whilst the fundamental solutions gradients are given by the formulas

∂u?( · )
∂xi

=



1

2π

( ri
r2

)
,

1

2πr2ao

[
µrK1 (µr) ri −

r2

2ao
Ko (µr) voi

]
exp

(
vojrj
2ao

)
,

ri
8πa2

oτ
2

exp

(
− r2

4aoτ

)
,(

ri
8πa2

oτ
2
− vi

8πa2
oτ

)
exp

(
− r2

4aoτ
− v2

oτ

4ao
+
vojrj
2ao

)
.

(13)
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The notations (ξ, tF ) and (s, t) represent the source and field points in the solution domain,
respectively, τ = tF − t, with r and vo are the modulus of rj = xj(ξ)− xj(s) and vj ,
respectively, whilst the Ko and K1 are the modified Bessel functions of the second kind.

It is obvious that the elliptic Laplace fundamental solution depends on the geometry
capturing just the conduction of the conservation field function, thus it is the simplest
one. The advantage is that the influence matrices of the BEM numerical model have to be
computed only once, but the convection is not treated in a special manner. In contrast, the
elliptic diffusion-convective fundamental solution depends on the velocity field, too. Both
the characteristic fluxes of the transport phenomena in fluid flow, namely the diffusion and
convective fluxes, are properly addressed; the disadvantage is that the influence matrices have
to be computed in each iterative step, which considerably lowers the economics of the BEM
model.

Similar conclusions can be stated about the time dependent fundamental solutions.
The parabolic diffusion one accurately weights the accumulation and the diffusion of the
conservation field function. It depends on the transport properties, geometry and time step and
is thus much more complicated than the elliptic Laplace solution. For the constant transport
properties, diffusion coefficient, the influence matrices only have to be computed once again.
It is also clearly shown from the physical point of view that the most attractive and complete
fundamental solution for dealing with general time dependent transport problems in fluid flow
characterised by high Peclet number values, is the last one in eqn (12), which is the parabolic
diffusion-convective fundamental solution. It depends on the geometry, material properties,
velocity field and time step, therefore the accumulation, diffusion and convection of the
conservation field function are properly addressed in the weighting of residual statement.

The corresponding boundary-domain integral representation for eqn (4) or eqn (8) can
be formulated by applying a weighted residual technique or simply by Green’s theorems,
resulting in the following integral statement written for a time step ∆t = tF − tF−1

c (ξ)u (ξ, tF ) + ao

∫
Γ

∫ tF

tF−1

u

(
q? +

1

ao
vojnju

?

)
dt dΓ = ao

∫
Γ

∫ tF

tF−1

qu? dt dΓ

+

∫
Γ

∫ tF

tF−1

γjnju
? dt dΓ−

∫
Ω

∫ tF

tF−1

(γjq
?
j − γu?)dt dΩ +

∫
Ω

uF−1u
?
F−1dΩ, (14)

where q = qjnj and q? = q?jnj are the field function or fundamental solution normal fluxes.
Assuming constant variation of all field functions within the individual time increment
∆t = tF − tF−1 the time integrals in eqn (14),

U? = ao

∫ tF

tF−1

u? dt, Q? = ao

∫ tF

tF−1

q? dt, Q?
j = ao

∫ tF

tF−1

q?j dt, (15)

can be evaluated analytically for the parabolic diffusion fundamental solution or numerically
in the case of the parabolic diffusion-convection fundamental solution. However, it should
be noted that integration over time can be done analytically, too, for the three-dimensional
parabolic diffusion-convection fundamental solution [6], [8], but the expression is pretty
extensive, yielding the following general form of integral representation

c (ξ)u (ξ, tF ) +

∫
Γ

u

(
Q? +

1

ao
vojnjU

?

)
dΓ =

∫
Γ

qU?dΓ

+
1

ao

∫
Γ

γjnjU
?dΓ− 1

ao

∫
Ω

(γjQ
?
j − γU?)dΩ +

∫
Ω

uF−1u
?
F−1dΩ. (16)
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It is obvious, that for the steady state problems the influence of the initial conditions captured
by the last domain integral vanishes, and the elliptic fundamental solutions should be applied.
Also, for the diffusion type fundamental solutions, the convective flux for the dominant
velocity vo is identical to zero. It is also clear that the application of the diffusion-convection
fundamental solutions, especially the parabolic one, is much more expensive in computational
time compared with the diffusion type of fundamental solution. Therefore, a compromise
between stability and computational time cost can be considered when solving diffusion-
convection transport phenomena, for example in such a way that for the macroelements
characterised by cell Peclet number values lower than a prescribed critical value, e.g.
Pecell < Pecr, the diffusion type fundamental solutions are applied.

4 THERMALLY DRIVEN CAVITY FLOW
To evaluate the proposed numerical algorithm, the standard pure buoyancy driven natural
convection is considered. The problem has been proposed by Davis [2] as a standard
example for comparing different numerical techniques in computational fluid mechanics.
The motion is caused by the buoyancy force caused when the uniformly heated left wall
is at the temperature Th = +0.5, while the right wall is uniformly cooled to the temperature
Tc = −0.5, and the rest of the boundary is adiabatic.

Different nonuniform macro-element meshes were used based on continuous quadratic
approximation of all field functions and discontinuous linear approximation of the
corresponding normal derivatives over the boundary elements: (a) M = 10× 10, (b) M =
20× 20, (c) M = 40× 40. The meshes were compressed in the normal wall direction in
both coordinates with the geometrical series having the ratio between the longest and shortest
elements R = 10. The motion is analysed for Rayleigh number values in the range of
103 ≤ Ra ≤ 109 for Prandtl number value Pr = 0.71. Table 1 shows the comparison of the
computed average Nusselt number values with values of benchmark solution [2], [9], [21],
[23]. We can observe very good agreement of BEM results with the benchmark solutions,
although rather coarse BEM numerical models were applied.

5 CONCLUSIONS
In this work an improved numerical solution algorithm based on BEM numerical model has
been discussed. The macroelement concept is based on a continuous quadratic approximation
of all field functions and the discontinuous linear approximation of corresponding normal
derivatives.

Integral representations of the diffusion-convection PDE have been discussed for four
different fundamental solutions, which capture more or less physics of a general transport

Table 1: Nusselt number values for different Rayleigh number values.

Ra 103 104 105 106 107 108 109

10× 10 1.116 2.242 4.521 – – – –

20× 20 1.117 2.244 4.521 8.828 16.548 – –

40× 40 1.118 2.245 4.522 8.826 16.529 30.2 55.9–56.2

[2], [9], [21], [23] 1.118 2.243 4.519 8.825 16.523 30.225 57.35–58.1
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phenomena. The parabolic diffusion-convective fundamental solution, especially, shows its
superiority over all others; however, its applicability is limited by the critical Peclet number
value, due to high computation cost. Therefore, it is applied only in the macro-elements with
the dominant convection flux, Pecell > Pecr.
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