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Abstract 

Based on the relaxation approximation, the nonlinear governing equations of 
detonation in condensed explosives are transformed into linear relaxation 
systems, which can easily adopt simple and effective high resolution scheme. A 
fifth-order WENO reconstruction in space discretization and a fifth-order IMEX 
scheme of linear multistep methods with monotonicity and TVB in time 
discretization are utilized, where it can be avoid solving Riemann problem and 
calculating the Jacobian matrix of nonlinear flux, and it is not necessary to split 
the reaction source term. The present method is applied to simulate the steady 
structure of a one-dimensional planar detonation wave in condensed explosives, 
and the results demonstrate the excellent performance of the present method. 
Keywords: relaxation method, detonation wave, condensed explosives, high 
resolution scheme. 

1 Introduction 

The design of complex engineering devices that use high explosives to do useful 
and controlled work requires the capability to exactly numerically simulate 
detonation. At present, the Lagrangian method is the most widely used to 
simulate detonation of condensed explosives. However, it is well known that the 
Lagrangian method has the following distinct shortcomings [1]: 1) to preserve 
with difficulty conservation of the total energy due to usually using staggered 
discretization grids; 2) to commonly smear the discontinuity of detonation wave 
due to using artificial viscosity, and give with difficulty the exact coefficient of 
artificial viscosity; 3) to be only one-order precision in temporal and spatial 
discretization, and extend with difficulty to high-order precision; 4) to easily 
distort discretization grids to result in calculation fail when using small grids. 
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     The Eulerian method with high-order precision and high resolution can well 
overcome the shortcomings of the Lagrangian method, so more and more 
attention to the Eulerian method has been paid. Representative works show some 
characteristic results of Eulerian method [2–5]: using a two-order Godunov 
scheme, adopting simple equation of state and chemical reaction model, applying 
split idea to process source term of chemical reaction law. 
     The governing equations of the detonation in condensed explosives are 
nonlinear hyperbolic conservation system with strongly stiff reaction source term 
and complex equation of state. The strong stiffness of reaction source term and 
the complexity of equation of state bring enormous difficulty to apply high-order 
precision and high resolution scheme. 
     When strongly stiff source term is discretized, insufficient spatial/temporal 
resolution may cause an incorrect propagation speed of discontinuities and 
nonphysical states for standard dissipative numerical methods that were 
developed for non-source flows. Yee et al. [6, 7] point out that the phenomenon 
of wrong propagation speed of discontinuities is connected with the smearing of 
the discontinuities caused by the discretization of the advection term. The 
smearing introduces a nonequilibrium state into the calculation, thus as soon as a 
nonequilibrium value is introduced in this manner, the source term turns on and 
immediately restores equilibrium, while at the same time shifting the 
discontinuity to a cell boundary. So, exactly capturing detonation wave 
discontinuity requires the high resolution scheme with low numerical dissipation. 
At present, the most high resolution schemes have utilized Riemann Solver 
based on simple equation of state, such as the perfect gas with Gamma law. 
However, unrected solid component and gas product component of detonation in 
condensed explosives usually utilize some complex equation of state, such as 
Jones-Wilkins-Lee (JWL), HOM, BKW, Davis, extremely, SESAME data 
library, also, the temperature of mixing zone in chemical reaction needs to 
iterative operation when generally considering pressure and temperature as 
equilibrium state. Apparently, the high resolution scheme based on Riemann 
Solver is difficult to numerically calculate the flow equations of detonation in 
condensed explosives. In order to exactly capturing the discontinuity, besides the 
high resolution in spatial discretization, the high resolution in temporal 
discretization is very necessary. Representative results [9] show that the 
unsplitting explicit and implicit scheme is much more reliable: the advection 
term adopts explicit scheme, and the source term adopts implicit scheme. 
     Recently developing relaxation method is a kind of effective strategy to 
numerically solve hyperbolic conservation system [10–13]. The main idea of the 
relaxation method is to transform the nonlinear hyperbolic conservation system 
into linear hyperbolic relaxation equations by means of relaxation approximation. 
When the relaxation rate tends to zero and the subcharacteristic condition is 
satisfied, the solution of the relaxation equations converges to the solution of the 
original hyperbolic conservation system. In comparison with upwind schemes 
such as the Godunov scheme, relaxation method does not require the Riemann 
Solver and the computation of its Jacobians. These features make the relaxation 
method particularly suitable for those systems where the Riemann problem is 
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difficult to solve or when it is not possible to perform analytical expression for 
Jacobians. The relaxation method is gradually applied to gas dynamics [14], 
shallow water motion [15], dynamic phase transition [16], multicomponent flow 
[17], magnetohydrodynamic [18]. 
     In the paper, the relaxation method is applied to numerically simulate the 
typical detonation problem about the condensed explosives. After the nonlinear 
governing equations of the condensed explosives are transformed into linear 
relaxation equations, an improved fifth-order weighted essentially non-
oscillatory (WENO) [19] is utilized to spatially discretize and a fifth-order IMEX 
scheme of linear multistep methods with general monotonicity and boundedness 
properties is utilized to temporally discretize [9]. The numerical example about 
one-dimensional steady structure of detonation wave in PBX-9404 demonstrates 
that our method has high accuracy and high resolution properties. 

2 Governing equations of detonation in condensed explosives 

The one-dimensional flow equations of detonation in condensed explosives 
under Eulerian frame are following: 

    
( )

( )
t r

 
 

 
u f u

s u                                       (1) 

where 
 

[ , , , ]N N N N Tr vr Er r   u , 
2[ , ( ) , ( ) , ]N N N N T( ) vr v p r E p vr v r      f u , 

1[0, ,0, ( , , )]N N T( ) Nr p r R p  s u , 

 
where N is geometry factor (N = 0 for plane, N = 1 for cylinder, and N = 2 for 
sphere), and R is chemical reaction rate, where three-term Lee-Tarver reaction 
law is adopted [8]: 

        1 1 1 2 2 2
1 1 2( 1 ) (1 ) (1 ) (1 )y x z y x zn yR I a G p G p             . 

The unrected solid component and gas product component of detonation in 
condensed explosives utilize Jones-Wilkins-Lee equation of state. On 
assumption that the pressure and temperature in reaction mixing zone is 
equilibrium, the state of mixing zone may express as (subscript s denotes solid 
component and subscript g denotes gas product component): 
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where 0 /V    is the relative volume, e  is the internal energy per mass. 

3 Establishment of relaxation equations 

By means of relaxation approximation, the governing equations about condensed 
explosives may be replaced by the following relaxation system: 

     

( )
t r

( )

t r 

     
    
  

2

u w
s u

w u f u w
A

                                      (2) 

where w  is a middle variable, 1 2 3 4= diag[a ,a ,a ,a ]A  is a positive diagonal 

matrix, 0 1   is a relaxation rate. 
     The linear character of relaxation system (2) is utilized to construct simple 
and effective high resolution scheme. Papers [10, 11] point out that the solutions 
of (2) approach the solutions of original problem (1): ( )w f u , as 0,   

provided the following subcharacteristic condition holds: 

    
( )

k ka a


  

f u

u
( 1,2,3,4k  )  for all .u  

The role of relaxation rate in numerical scheme may be analyzed [12]. 
     Because w  can converge to ( )f u , there is a Chapman-Enskog expansion: 

    2
1 2( ) ( ) ( )    w f u f u f u                              (3) 

   By substituting (3)  into  (2)  and  collecting  terms,  a  first-order  approximation   
of system (2) can be determined: 
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  Thus, system (4) is dissipative if the subcharacteristic condition 
holds. Introducing relaxation rate is equivalent to introducing numerical dissipation. 
In practice, the elements of diagonal matrix in system (2) may be chosen as: 

 ( ) /= max  A f u u  in the whole flowfield zone. Thus, A  is a constant matrix, 

and the bigger A  implies the bigger numerical dissipation. 

4 Solution of relaxation equations 

Diagonalize the system (2) and holds: 
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( (
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                   (5) 

 

  It can  be  found  that  the  system  (5)  has  constant  linear  character  with  
characteristic line /dr dt  A  and Riemann Invariables .w Au  
     A semi-discrete finite difference scheme with uniform space sizes for the 
system (5) can be approximated into: 
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where u = w Au , +w = w Au . 

     The spatially discretizing terms i 1/2u  and i 1/2w  in system (6) may adopt an 

improved fifth-order weighted essentially non-oscillatory (WENO) [19]: 
 

(1) (2) (2)
1/ 2 1 1/ 2 2 1/ 2 1 1/ 2i i+ i i+w w + w     u u u u , 

(1)
1/ 2 2 1
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(2)
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6 6 3i+ i i i       u u u u , 

(3)
1/2 1 2

1 5 1

3 6 6i+ i i i   u u u u    , 
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   While temporally discretizing the system (6),  the following ordinary differential 
equations can be determined: 

    ( ) ( )
d

dt
 

q
q q                                          (7) 

where [ , ] ,T  q u w ( ) q  denotes the discretization of the advection term in 

system (6), ( ) q  denotes the discretization of the source term in system (6). 

     A fifth-order IMEX scheme of linear multistep methods with general 
monotonicity and boundedness properties [9] is adopted to discretize the 
ordinary differential equations (7): 
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     A three-order Runge-Kutta method is used for starting procedure of the 
IMEX scheme of linear multistep method. 
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     Finally, the relaxation scheme with temporal-spatial fifth-order precision 
about the detonation flows in condensed explosives turns into the expression (8). 
It is worthy of indicating that the discretization procedure does not solve 
Riemann problem. 

5 Numerical example 

In this section, the steady structure of one-dimensional planar detonation wave in 
condensed explosives PBX-9404 is calculated. The JWL parameters for 
unreacted solid component of PBX-9404 are ( )g cm s   [8]: 0 1.842,   

69.69,sA   1.727,sB    1 7.8,sR   2 3.9,sR   0.8578,s   

V sC 52.505 10 ,   and the JWL parameters for gas product component of PBX-

9404 are: 8.524,gA   0.1802,gB   1 4.6,gR   2 1.3,gR   0.38,g   
51.0 10 ,V gC    0 0.102;E   and the corresponding parameters of Lee-Tarver 

reaction law are: 117 43 10 ,I .  20 0,n . 0 667,y .  1 3 1,G .  1 0 111,x .  

1 0 667,y .  1 1 0,z .  2G =400.0,  2 1 0,x .  2 0 333,y .  2 2 0,z .  0 0a . .  The 

values for Von Neumann spike are: 0 563,Np .  0 6075,NV .  0 347;Nu .  and 

the corresponding values for Chapman-Jouguet state are: 0 370,CJp .  

0 7403,CJV .  0 229,CJu .  0 8809D . .  

     The relaxation rate takes 710 .   
     When the detonation arrives at the steady state, the distribution of physical 
variables in chemical reaction zone can be exactly obtained by means of the 
Hugoniot relations of detonation wave. In this example, the calculating length of 
explosives takes 4.0cm, and the explosives is initiated by the Chapman-Jouguet 
condition at its left hand. The distributions of pressure, relative volume, velocity 
and mass fraction in chemical reaction zone are obtained, and comparisons are 
made with the exact solutions. Figure 1(a)–(d) gives the results where the mesh 
sizes of mesh 1-4 respectively are 1 1000,r /  1 2000,/ 1 5000,/ 1 10000/  cm. 
At the same time, the relation of the Chapman-Jouguet velocity and Von 
Neumann pressure to the mesh sizes is given in Figure 2(a)–(b). From Figure 1, 
the shock front of detonation wave is well resolved, and the spurious oscillation 
does not appear in the vicinity of the shock discontinuity. From Figures 1 and 2, 
when the mesh size is less than 1 5000/ cm (about 50 meshes in the reaction 
zone), the calculating solutions agree well with the exact solutions. 

6 Main conclusions 

1) This paper presents the relaxation method for numerically simulating the 
detonation in condensed explosives, and a temporal-spatial fifth-order precision 
scheme is utilized to discretize the relaxation equations, which does not require 
solving Riemann problem and calculating the Jacobian matrix of nonlinear flux 
and splitting the reaction source term. 
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                            (a) pressure                                               (b) relative volume 
 

 
                         (c) velocity                                                      (d) mass fraction 

Figure 1: The physical variables in chemical reaction zone of PBX-9404. 

 
                        (a) CJ velocity                                       (b) Von Neumann pressure 

Figure 2: The relation of the CJ velocity and Von Neumann pressure to the 
mesh sizes in PBX-9404. 
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2) The calculating results for the steady structure of one-dimensional planar 
detonation wave in PBX-9404 demonstrate the high precision and high 
resolution of the present method. 

3) The present method will be generalized to two-dimensional problems for 
condensed explosives. 
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