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Abstract

The problem of unsteady compressible fluid flow in an enclosure induced by ther-
moacoustic waves is studied numerically. Full compressible set of Navier-Stokes
equations are considered and numerically solved by boundary-domain integral
equations approach, coupled with wavelet compression and domain decomposi-
tion to achieve numerical efficiency. The thermal energy equation is written in
its most general form including the Rayleigh and reversible expansion rate terms.
Both the classical Fourier heat flux model and wave heat conduction model are
investigated. The momentum flux is modelled using standard Newtonian viscous
model and linear viscoelastic Maxwell model.

The velocity-vorticity formulation of the governing Navier-Stokes equations
is employed, while the pressure field is evaluated from the corresponding pres-
sure Poisson equation. Material properties are taken to be for the perfect gas and
assumed to be pressure and temperature dependent.
Keywords: compressible fluid flow, velocity-vorticity formulation, Navier-Stokes
equations, thermoacoustic waves.

1 Introduction

In the paper the generation and transmission of thermoacoustic waves in an per-
fect gas filled closed cavity is studied numerically. When a compressible fluid is
subjected to a rapid increase in temperature at a solid wall, a sudden expansion
of the adjacent gas occurs. This phenomenon generates a fast increase in the local
pressure and leads to the production of pressure waves. These thermally generated
waves are referred to as thermoacoustic waves.

Thermoacoustic transport phenomena may be very interesting, when the fluid is
close to thermodynamic critical point or when other modes of transport mechanism

 © 2008 WIT PressWIT Transactions on Engineering Sciences, Vol 59,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Advances in Fluid Mechanics VII  13

doi:10.2495/AFM080021



are weak or absent. Thermoacoustic waves enhance heat transport by converting
the thermal energy into compression work and by inducing convection motion
away from the heated wall. This mode of heat transfer is dominant in the space
environment under zero- or reduced-gravity conditions, where natural convection
of heat transport may be absent or low, and when heat conduction is the only mode
of heat transport mechanism.

The problem of thermoacoustic transport phenomena in a perfect gas confined
in an enclosure subjected to a sudden increase in temperature at a solid wall, have
been considered experimentally and numerically by Huang and Bau [1] as well
as by Brown and Churchill [2]. In the literature one can find analytical attempts
to study the phenomenon limited mainly to simplified models, while the solutions
to general cases have been performed by numerical approximative methods. In
the present paper the boundary element method (BEM) is used. Previous studies
of Lin and Farouk [3], Aktas and Farouk [4], Škerget and Ravnik [5], observed
strong thermoacoustic waves as a consequence of impulsive heating. Horizontal
velocity component reverses sign after reflection from the side walls. The flow
field is essentially one-dimensional.

2 Governing equations for the primitive variables formulation

The field functions of interest are velocity vector field vi , scalar pressure field p,
temperature field T and the field of mass density ρ, so that the mass, momentum
and energy equations are given by the following set of nonlinear equations:
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in the Cartesian frame xi , where c denotes changeable isobaric specific heat capac-
ity per unit volume, c = cpρ, t is time, gi is gravitational acceleration vector, while
β is a volume coefficient of thermal expansion, λ is a heat relaxation time and
� is the Rayleigh viscous dissipation function. Because of the analytical reasons
required by the derivation of the velocity-vorticity formulation of the governing
equations, the momentum equation is given in the second extended form.

The Newton momentum viscous and Maxwell viscoelastic constitutive models
are considered, such as

τij = τ v
ij + τ e

ij = 2ηε̇ij − 2

3
ηDδij − λ1
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∂t
, (4)
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where the extra stress tenzor or the momentum flux tenzor is given as a sum of
viscous τ v

ij and elastic τ e
ij effects. D = div�v = ε̇ii represents the divergence of

the velocity field or local expansion field. The parameter λ1 is the stress relaxation
time. The Rayleigh dissipation function may be stated as

� = τij
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ηD2. (5)

In the case of intensive unsteady heat transfer, it is important to take into account a
terminal velocity of a moving temperature frontier, namely the following form of
heat flux constitutive model

qi = −k
∂T

∂xi

− λ
∂qi

∂t
, (6)

where material constants k and λ are the heat conductivity and the heat relax-
ation time. For most heat transfer problems of practical importance, the simpli-
fication known as the Fourier law of heat diffusion is accurate enough, namely
qi = −k ∂T

∂xi
.

Representing the material properties of the fluid the dynamic viscosity η, heat
conductivity k, the specific heat per unit volume c, and the mass density ρ, are
written as sums of a constant and variable part, e.g. η = ηo + η̃, k = ko + k̃,
c = co + c̃, and ρ = ρo + ρ̃, so the momentum and energy eqs. (2) and (3) may be
written in analogy to the basic conservation equations formulated for the constant
material properties
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where the pseudo body force term �f m and pseudo heat source term Sm are intro-
duced into the momentum eq. (7) and into energy eq. (8) respectively, capturing the
variable material property effects, and the nonlinear effects due to rate of reversible
and irreversible work, and given by expressions, e.g. for plane flow problems
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while the pseudo heat source term is given by an expression
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in which the kinematic viscosity is νo = ηo/ρo, the heat diffusivity ao = ko/co

and the inertia acceleration vector is �a = D�v/Dt .
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3 Governing equations for the velocity-vorticity formulation

The kinematics of the flow motion is governed by the following vector elliptic
Poisson equation for the velocity vector

∇2�v + �∇ × �ω − �∇D = 0. (11)

The kinetics of the flow representing the vorticity transport equation is obtained
by applying the curl differential operator to the both sides of eq. (7), rendering the
following statement for the two-dimensional plane flow written in Cartesian tensor
notation form as
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To derive the pressure equation, depending on known velocity field, vorticity
field and material functions, the divergence of momentum equation should be cal-
culated, resulting in the elliptic Poisson pressure equation

�p − �∇ · �fp = 0, (13)

where the pressure force term �fp is for the planar flow cases

∂p
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= fpi = −ηoeij
∂ω
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− ρoai + ρgi + f m
i + �∇ · τ e. (14)

The Neumann boundary conditions for pressure equation may be determined for
the whole solution domain and the following relation is valid

∂p

∂n
= �fp · �n on �. (15)

Due to the variable material property terms, and rate of reversible and irre-
versible work acting as additional temperature, pressure and velocity field depen-
dent source terms, the vorticity, thermal energy, and pressure equations are cou-
pled, making the numerical solution procedure of this highly nonlinear coupled set
of equations very severe. Already, the vorticity transport equation as itself is highly
nonlinear partial differential equation due to the inherent nonlinearity caused by
the compatibility and restriction conditions among velocity, vorticity and dilata-
tion fields. The dilatation and the vortical part of the flow, D and �ω field functions
respectively, and all other nonlinear terms have to be under-relaxed to achieve the
convergence of the numerical solution procedure.

4 Numerical algorithm

The nonlinear system of partial differential equation described in the previous sec-
tion is solved by a combination of two BEM techniques. The wavelet compressed
BEM (Ravnik et al. [6]) is used to calculated boundary values of vorticity and
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pressure, while a macro element BEM governed by a square system matrix is used
to solve other equations. The algorithm is presented in detail below:

• calculate integrals, that depend solely on the mesh geometry
• use wavelet compression on matrices of integrals
• begin time step loop

– begin global nonlinear loop
- begin local kinematic-vorticity loop

- KINEMATICS
* calculate boundary values by solving the kinematics

equation by wavelet compressed single domain BEM
* calculate domain velocity values by solving the kinemat-

ics equation by subdomain BEM
- VORTICITY KINETICS
* solve vorticity transport equation by subdomain BEM

using the boundary values from single domain BEM cal-
culation

* check convergence - repeat steps in the local loop until
convergence is achieved

- end local kinematic-vorticity loop
- ENERGY KINETICS
* temperature
- PRESSURE COMPUTATION
* calculate boundary values by solving the pressure equation by

wavelet compressed single domain BEM
* calculate domain pressure values by solving the pressure equa-

tion by subdomain BEM
- NON-LINEAR EFFECTS
* calculate all nonlinear terms (dilatation, reversible and irreversi-

ble rate of work, nonlinear material properties)
- CONSTITUTIVE FLUX MODELS
* Fourier and non-Fourier heat flux model
* Newton viscous and Maxwell viscoelastic models
* check convergence - repeat steps in the nonlinear loop until con-

vergence is achieved
– end global nonlinear loop

• end time step
• output results

With the aim of decreasing storage and CPU time requirements of the single
domain BEM we employ the macro element approach. The idea is to use a col-
location scheme for equation for each domain cell separately and require that the
functions must be continuous over the domain cell boundaries. Since every domain
cell neighbours only to a few cells, we end up with a sparse system of equations.
In a nutshell we are using single domain BEM on every domain cell separately
and connect them via compatibility and equilibrium conditions (Škerget et al. [7],
Ravnik et al. [8]).
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In order to be able to perform simulations on dense grids, we used a wavelet
compression algorithm on fully populated matrices, resulting from the BEM cal-
culation of boundary vorticity. A discrete wavelet transform for vectors of arbitrary
length, developed by Ravnik et al. [6, 9], was used.

5 Numerical example

Using the developed numerical scheme we analysed the onset of thermoacoustic
waves in an enclosure. The enclosure is 13 mm wide and 13 mm high. It is filled
with nitrogen gas at p = 101325 Pa and T0 = 300 K. In the beginning the fluid
is at rest. At t = 0 the left wall is impulsively heated to TL = 400 K. During the
simulation (t > 0) a constant temperature of TR = 300 K is kept on the right wall
and TL = 400 K on the left. The top and bottom walls of the enclosure are con-
sidered adiabatic, i.e. there is no heat flux through them. Gravity is neglected. The
enclosure is closed by walls, which have a no-slip velocity boundary condition.

The ideal gas is chosen as a working fluid, thus the equation of state for the
perfect gas is applied

p = ρRT, (16)

to relate the temperature to the other thermodynamic quantities. In the present
research the Prandtl (Pr) number is assumed to remain constant, e.g. the following
constant physical values are selected for the nitrogen (N2): κ = 1.4, R = 296.7
and Pr = 0.713. The temperature dependence of the material properties are taken
into account using the following polynomial expressions, e.g. for the dynamic vis-
cosity η

η(T ) = −1.253 ·10−6+8.983 ·10−8T −1.139 ·10−10T 2 +9.101 ·10−14T 3, (17)

the heat conductivity

k(T ) = 1.494 · 10−4 + 1.108 · 10−4T − 1.045 · 10−7T 2 + 6.958 · 10−11T 3, (18)

while the heat relaxation time value λ = 0.1 was selected. The influence of tem-
perature on cp is neglected.

For the impulsive heating, the temperature of the left wall is given as

TL(t) = T0(1 + A), (19)

where the over heat ratio A is given by an expression

A = TL − T0

T0
, (20)

and A = 1/3 for all cases presented for spatially uniform wall heating, thus the
left wall temperature is equated to TL = 400 K.

Three meshes were used in simulations. The coarse mesh with 20×20 elements
(1681 nodes), the middle mesh with 30 × 30 elements (3721 nodes) and the fine
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v=0.002m/s

Figure 1: Temperature contours (left) and velocity vectors (right) at t = 0.15 s,
zero gravity condition, 20 × 20 element mesh, �t = 10−4 s.

mesh with 40×40 elements (6561 nodes). Two time steps were used for simulation.
The long time step of �t = 10−4 s, which enabled a long-term simulation reaching
steady state. The short time step of �t = 10−6 s enabled an insight into the physics
of the phenomenon. The short time step was used on the coarse and middle meshes,
while the long time step was employed on the fine mesh.

The short time step simulation lasted for 0.8 s. On Figure 1 we are showing the
temperature field and the velocity fields at t = 0.15 s. Since there is no gravity and
hence no buoyancy the flow field appears to be one-dimensional.

A point in the middle of the enclosure (x = 0.065 m, y = 0.065 m) was chosen
for demonstration of the time development of the flow. On Figure 2 (left) a pres-
sure and temperature evolution with time is shown. We observe a gradual increase
of pressure, faster in the first tenth of a second and slower after that. No pressure
waves are observed, which was expected since the time step is too long to capture
phenomena which occur with the speed of sound. The pressure distribution in the
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Figure 2: Pressure (left) and temperature (right) in the centre of the enclosure (x =
0.065 m, y = 0.065 m) versus time; �t = 10−4 s.
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Figure 3: Temperature (left) and density (right) profiles through the centreline of
the cavity. Development of the profile with time can be seen; �t =
10−4 s.

enclosure is uniform. At t = 0.8 s the pressure reaches about p = 114000 Pa.
Looking at the evolution of the temperature of nitrogen in the middle of the enclo-
sure on Figure 2 (right) we observe that the temperature increase is more or less
linear. The nitrogen in the centre of the enclosure reaches T = 340 K.

To show the variation of flow fields across the enclosure we examined profiles
along the horizontal centreline (x, 0.065 m). Figure 3 shows temperature and den-
sity profiles for six time instants. The very sharp temperature profile in the begin-
ning of the simulation is caused by the application of boundary conditions. At long
times, a steady state diffusive temperature profile is observed. Since the ideal gas
approximation of nitrogen is assumed and since the pressure distribution in the
cavity is uniform the density profiles are reciprocal to those of temperature.

The simulation on the fine mesh was preformed using a time step of 10−6 s.
Figure 4 shows the time evolution of pressure and horizontal velocity component
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Figure 4: Pressure and horizontal velocity in the centre of the enclosure with time
(left); Temperature in the centre of the enclosure with time (right); 40 ×
40 element mesh, �t = 10−6 s.
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Figure 5: Pressure profiles through the centre of the enclosure; 40 × 40 element
mesh, �t = 10−6 s. Left Fourier heat diffusion rheological model, right
non-Fourier heat diffusion rheological model.

in the centre of the enclosure. Due to the presence of thermoacoustic waves a fluc-
tuating increase of pressure and changing sign of horizontal velocity is observed.
At the same time a fluctuating increase of temperature is also observed.

Figure 5, left, shows pressure profiles across the centreline of the enclosure at
t = 10 µs and t = 30 µs. By measuring the distance travelled by the thermoa-
coustic wave between these time instants we were able to estimate the speed of
sound to about 322m/s, which is within 10% of the correct value for nitrogen.

The non-Fourier heat transfer model was also simulated on the fine mesh with a
time step of �t = 10−6s. Using subsequent pressure profiles we were able to esti-
mate the distance travelled by the pressure wave in a specified time interval. This
enabled the estimation of the speed of sound, which amounted to about 318 m/s.
The two profiles were selected to be 10 µs apart and are displayed on Figure 5,
right.

6 Conclusions

In this work a numerical algorithm for solving laminar compressible viscous flow
and heat transfer is presented. The method is used to simulate the onset of ther-
moacoustic waves in a nitrogen filled enclosure subjected to a high temperature
gradient. The results show the occurrence of thermoacoustic waves travelling
across the enclosure at the speed of sound. During the expansion phase, the wave
temperature dips bellow the average medium temperature. The thermoacoustic
waves propagate at approximately the speed of sound within the fluid and grad-
ually damp out due to heat and momentum diffusion. Extremely high gradients
are present in the flow field, which generate the pressure waves and are difficult to
model numerically. Our findings are consistent with numerical and experimental
results of other authors, confirming the applicability of BEM for such flows.
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Detailed investigation of the influence of different constitutive models on the
flow phenomenon will be presented at the conference.
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