
 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020), 218–229

© 2020 WIT Press, www.witpress.com
ISSN: 2058-8305 (paper format), ISSN: 2058-8313 (online), http://www.witpress.com/journals
DOI: 10.2495/TDI-V4-N3-218-229

TOWARDS SAFE AND SECURE COMPUTER BASED
RAILWAY INTERLOCKING SYSTEMS

SéBASTIEN MARTINEz1, DALAY ISRAEL DE ALMEIDA PEREIRA1, PhILIPPE BON1, SIMON COLLART-
DUTILLEUL1 & MATThIEU PERIN2

1Univ. Lille Nord de France, France
2Institut de Recherche Technologique Railenium, France

ABSTRACT
Railway interlocking systems (RIS) are responsible for the control of trains’ movements by allowing or
denying their routing according to safety rules. Originally built as mechanical systems then as electrical
mechanical systems, they are modelled as relay-based electrical circuit diagrams and checked manu-
ally. Even recent computer based RIS are still modelled as relay diagrams. Manual checking of safety in
such a critical context is an issue that needs to be addressed by the railway domain. In this context, one
of the objectives of the LChIP project is the development of computer-based RIS based on the formal
specification of the RIS behaviour, which allows the generation of formally checked computer binaries
by refinement. however, the produced binaries may be accessed and tampered with by ill-intended
persons as computer code is easier to analyse and understand than electrical mechanical systems. In the
context of the LChIP project, binaries are run on a Microchip PIC32 MCU embedding two independent
32-bit MIPS processors. The choice of such generic architecture allows easier production and maintain-
ability, lower production costs and easier replacement in case of hardware failure. It also makes it easier
to reverse engineer compiled software as the MIPS architecture is well documented and has a small
instruction set. This paper presents how binaries can be obtained using the B-method formal language
and it discusses the usage of software obfuscation as a way to ensure security of these binaries. Obfus-
cation transforms a piece of software to make it impossible to understand for potential attackers, while
keeping its observable behaviour: obfuscated software give the same outputs for the same inputs as their
unobfuscated counterparts. As the obfuscation transformations do not alter the behaviour of formally
checked generated binaries in a way that would void the safety checking, it is possible to secure com-
puter based RIS and prevent ill-intended persons from tampering with them.
Keywords: code obfuscation, formal methods, railway interlocking systems, safety, security.

1 INTRODUCTION
Railway interlocking systems (RIS) are responsible for controlling the trains’ movements in
a determined track by allowing or denying their movements as a way to avoid the occurrence
of hazardous situations, like collisions, for instance. As the occurrence of failures may cause
severe consequences, these systems are considered as safety-critical, which requires advanced
approaches in order to guarantee their safety. The first built RIS was purely mechanical, then
it evolved to use new technologies, becoming electrical mechanical systems, relay-based sys-
tems and, more recently, computer-controlled systems [1]. Relay-based RIS are still used by
many railway infrastructure managers, like SNCF (the French National Railway Company).
The logic of these systems are implemented as electrical circuits containing relays, an elec-
trical component that may control the flux of electrical current inside the circuit. however,
relay-based RIS are generally modelled by relay diagrams, whose informal error prone veri-
fication made by manually inspection may not guarantee the absence of errors [2]. Further-
more, as computer-based systems are easier to handle and maintain, cheaper and more flex-
ible to extend functions [3], the industry has interest on the creation of approaches in order to
transform the existing relay-base systems into computer-based systems.

 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020) 219

In this context, the LChIP Project1 was founded with the objective of using formal meth-
odologies of specification in order to support the analysis, verification and code generation of
RIS. The formal specification language used in this project is B-method [4], which has been
successfully used in many railway projects, like [5], [6] and [7], and whose mathematical
background and supporting tools allow the automatic safety proof and refinement in order
to generate safety-proved computer-controlled systems. The generated code may then be
installed on industrial micro-controllers embedding two processors as a way to support soft-
ware redundancy, allowing the code generated in two different refinement processes to run
on both processors. If both executions give different results, these results are considered as
errors and the system presents a different safe result instead. As micro-controllers are pro-
duced in industrial quantities, the production of a computer-based RIS tends to be cheaper
than the production of its relay-based version.

however, using common technologies such as mass produced micro-controllers and com-
puter software has an issue: as the system gets easier to be accessed and understood, ill-
intended attackers may try to tamper with it, causing unexpected accidents or disrupting
the traffic. Reducing the production costs generally also reduces the costs for attacking the
system, causing security issues. Achieving safe and secure computer based systems requires
raising the costs of attacks. Thus, by making programs more difficult to understand by human
readers, code obfuscation could increase the costs of attacks on RIS. Deobfuscating a pro-
gram is a costly task that must be achieved in order to understand its semantic and to tamper
with it. Moreover, code obfuscation allows specific strategies for protecting a program from
tampering, even when attackers achieve understanding its semantics.

In this context, this paper presents some recent results in the LChIP Project regarding
how the Relay-based RIS may be specified, safety-proved and refined in order to generate
computer-controlled systems. Furthermore, the protection of generated code from attacks
using code obfuscation as a way to avoid external unwelcome interference is also discussed.
Section 2 introduces how industry models the relay-based RIS, which may be formally speci-
fied and safety proved according to the methodology presented in Section 3. Then, Section 4
presents how models may be transformed into computer-based RIS through formal specifica-
tion refinement. The protection of these generated programs are then discussed in Section 5
and the conclusion of this paper is presented in Section 6.

2 RELAY DIAGRAM MODELS
RIS are the part of the signalling systems responsible for the logic behind the control of the
trains’ movements. The track-side sensors information is processed inside the RIS, which
responds by controlling the signals and turnouts according to safety requirements [8]. In
industry, these systems are implemented using some different technologies, like Relay-based
or computer-controlled, being this last one the most recent [1]. Despite the existence of new
technologies, many railway infrastructure managers still use relay-based electrical circuits in
order to implement RIS. This is the case of the SNCF, for instance.

A Relay-based RIS is the implementation of the interlocking logic by the use of electrical
circuits containing relays. A Relay is an electromechanical component that can control the
flux of electrical current inside the system by changing contacts positions. In this context,
a component is activated if it is directly or indirectly connected to a positive and a negative
energy source as a way to allow a flux of electrical current inside it.

1 (Low Cost high Integrity Platform) https://www.clearsy.com/en/4260-2/https://www.clearsy.com/
en/4260-2/

220 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020)

As electrical circuits, these systems are generally modelled as relay diagrams, which is
a representation in a graph form of how the components are connected by electrical wires.
As each railway company has its unique approach for modelling relay diagrams, this work
focuses on the models used by SNCF. Table 1 presents some of the electrical components that
may be used inside a relay diagram. A real industrial example is presented in Fig. 1. More
details about the SNCF relay-based RIS. modelling approach may be found in [9].

A contact may be opened or closed as a way to block or allow, respectively, the flux of
electrical current inside the wires. The contacts states are controlled by the relay states. A
relay may be monostable or bistable. The former contains only one electromagnet that pulls
or pushes the contacts against gravity when activated. In this case the contacts are placed
horizontally in the physical system. A bistable relay contains two electromagnetic coils that
pull the vertically positioned contacts to the left or right sides. The main difference between
a monostable and a bistable relay is their contacts states when the electromagnetic coils are
deactivated. When a monostable relay is deactivated, gravity makes the related monostable
contacts to change their states. however, when both bistable relays coils are deactivated,
gravity maintains the last state of the related bistable contacts.

The interaction between the system and the environment are made by the inputs and out-
puts. In this case, buttons and levers are the most known RIS interfaces. Similarly to contacts,
they control the flux of the electrical current. however, their states are entirely controlled by
the environment. In order to control the trains’ movements, the relay-based RIS outputs are
generally the commands for the signals and turnouts to change their states. Thus, in order to
guarantee the safety of these systems, one must assure that the signals and turnouts do not
lead the system to a hazardous situation, like a collision, for instance.

Some components may require some intending time to be activated or deactivated. This
timed behaviour is implemented by complex structures which are abstracted inside relay dia-
grams as blocks. A relay connected to a block may have its activation or deactivation delayed
according to the type of the block and the time depicted inside it.

Table 1: Elements that may be used in a relay-based diagram.

Energy sources.

A lever and a button, respectively.

Monostable and bistable relays, respectively.

Blocks for timed activation and deactivation, respectively.

A monostable and a bistable contact, respectively.

 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020) 221

3 FORMAL SPECIFICATION OF RELAY-BASED RIS
As a way to allow the formal specification of relay-based RIS, the use of B-method as a
formal language has been proposed in a previous work [10]. B-method is considered as one
of the strongest approaches for the specification of railway systems [11] and its success has
been proved by its use in many industrial projects ([5], [6], [7]).

In B-method, the specification is divided into smaller building blocks: the abstract machines
[12] . These machines are subdivided into clauses, each one containing some details about the
specified system. Some of these clauses are:

•	 SETS,	containing	sets	of	constant	information;	
•	 VARIABLES,	which	defines	the	system	variables;	
•	 INVARIANT,	defining	the	variables	types	and	properties	that	must	be	met	during	the	sys-

tem	execution;	
•	 INITIALISATION	which	presents	the	initial	values	of	each	variable;	
•	 and	OPERATIONS,	describing	the	system	state	evolution.

Details about B-method syntax and semantics as well as its mathematical foundations may
be found in [4].

In the context of this work, B-method supports the specification of the preconditions for
each electrical component to be activated inside a relay-based RIS. Based on this behavioural
specification, it is possible to analyse the impact of a component activation over the other
components states and define safety properties that must be met during the system execution.
Furthermore, the use of B-method supporting tools allows the animation and automatic safety
proof of the system, as presented later in this section.

3.1 Relay-diagram behavioural logic

The relay-based RIS logic is based on the precondition for each component to be activated.
The activation of a relay, for instance, changes the state of contacts related to it, which may
allow the electrical current to flow in other wires, provoking the activation of other compo-
nents. The precondition for the activation of a component is presented in Definition 3.1.

Figure 1: Partial relay diagram of a solution for the ITCS problem [10].

222 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020)

Definition 3.1. (Component Activation Precondition) An electrical component is activated
if both of its wires are connected to a different pole (positive and negative) of energy sources
in a way that allows the flow of electrical current inside the component. This means that all
contacts, buttons and levers between the component and both poles of energy sources must
be closed.

A component activates once there is an electrical current flux inside it. Following the same
logic, it is possible to define a precondition of the deactivation of a component, as presented
in Definition 3.2.

Definition 3.2. (Component Deactivation Precondition) An electrical component is deac-
tivated if its wires are not connected to different poles (positive and negative) of energy
sources, preventing the flow of electrical current inside it. This means that at least one con-
tact, button or lever between the component and one pole of energy source must be opened
(considering that there is no other connection to the same type of pole).

The activated and deactivated states of a monostable relay may be represented by means of
binary values, where TRUE is for the activated and FALSE for the deactivated state. The state
of a monostable relay changes as soon as the preconditions for this state is no longer met.
Nonetheless, as a bistable relay states depend on the activation and deactivation of two differ-
ent coils, the representation of its states tends to be more complex. It is a known characteristic
of relay-based systems that both coils of a bistable relay must never be activated at the same
time. This component assumes a “right” state as soon as the right coil is activated and the left
coil is deactivated. Following the same logic, this component assumes a “left” state when the
left coil is activated and the right coil is deactivated. however, if both coils deactivate, the
bistable relay has its last assumed state maintained by the gravity.

The contacts states depend exclusively on the relays states in a way that their behaviours
may be completely abstract by their related relays states. Thus, the activation and deactiva-
tion of some components is a consequence of the relays states. Besides, levers and buttons
may also impact the activation and the deactivation of components as they can also control
the flux of electrical current inside the wires. Nevertheless, as these components are part of
the system interface, they are controlled by the environment and they are treated as inputs for
the definition of the system state.

The analysis of the RIS safety involves the study of the system outputs according to the
given inputs. Output components may also be activated (TRUE) or deactivated (FALSE) and
their states may indicate the permission for a train to continue its route. In the example pre-
sented in Fig. 1, the components EF11 and KIT C 911 are responsible for allowing two trains
to enter in the same track in opposite directions. In this case, these outputs must be analysed
in order to guarantee that they will never be activated at the same time, which could lead to
a frontal collision between the trains. As a manual analysis may not be satisfactory in this
safety-critical context, the specification of the relay-based RIS may provide a safety proof of
the system based on mathematical foundations.

3.2 Relay-based logic specification in B-method

The relay-based RIS behaviour may be specified in B-method by defining the content of
each clause of the B-machine. In the SETS clause one may define some special components
states for levers or bistable relays. In our running example, for instance, it is defined the states
POS_O and POS_F for the “right” and “left” states of the bistable relay EIT_C_CSS. The
SETS clause of out running example is presented in Fig. 2.

 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020) 223

The state of relay-based RIS is defined by the specific state of each component. In a
B-machine, the system state is defined by the state of each variable. Thus, in our method-
ology, each component of the relay-based RIS is defined as a variable of the B-machine.
Nonetheless, as a way to simplify the specification without impacting on the system logic, it
is possible to abstract the contacts, since their states may be easily deduced from their related
relays during the system execution. Furthermore, as B-method supports the definition of
inputs in the system execution description, the RIS inputs are not treated as variables. These
specification decisions have no negative impact on the system safety verification, animation
and analysis. In fact, the less amount of variables decrease the number of states and allows a
faster and lighter verification.

The variables typing must be specified inside the INVARIANT clause. These types represent
the possible states that the components may assume during the system execution. Relays and
outputs, for instance, may be typed as Boolean, since they may assume the activated (TRUE)
and deactivated (FALSE) states. Bistable relays must be typed according to the special types
created in the SETS clause. Furthermore, it is also possible to define safety properties that
must be met during the system execution inside the INVARIANT clause. For instance, as the
components KIT_C_911 and EF11 may never be activated at the same time in our running
example, this property may be defined as presented in Fig. 3.

The initial state of a relay-based RIS is the functional state depicted in the relay diagram
itself. So, it is possible to define the initial state of the specified system in the INITIALISA-
TION clause according to the interpretation of the relay diagram. The specification of the
initial state of our running example is presented in Fig. 3.

The system execution logic is specified in a B-machine inside the OPERATIONS clause.
So, the state evolution of a RIS may be specified as a single operation that changes the com-
ponents states based on the inputs values given by the environment. A B-operation requires

Figure	2:	 B-method	MACHINE,	SET	and	VARIABLES	clauses.

Figure	3:	 B-Machine	INVARIANT	and	INITIALISATION	clauses.

224 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020)

the definition of a precondition where all the inputs must be typed. The logic for the complete
system state evolution may be specified using the following notation:

<<variables>>:(<<variables typing>> & <<variables information>>)

This expression allows the evolution of the system variables (<<variables>>) by inform-
ing their types (<<variables typing>>) and the conditions that the system must meet after
the execution of this expression (<<variables information>>). In this approach, these condi-
tions are the precondition for each component to be activated or deactivated. In our running
example, for instance, the precondition for the component KIT_C_CSS to be activated is
represented inside Fig. 4.

3.3 Animation and verification

The ProB tool [13], allows not only the animation of the machines but also their specifica-
tion and model-checking. During the animation, the tool allows operations to be called and it
always verifies if the machine state is valid according to the invariant. In this case, the ProB
tool contains a model-checker providing a counter example when an invalid state is found.

4 BUILDING A COMPUTER-BASED RIS
The B-method allows the specification refinement and disposes of a set of logical conditions
that can be verified in order to guarantee that the refined machine presents indeed the same
behaviour as the more abstract one. Thus, this methodology allows the refinement of the speci-
fication in order to implement safety-proved systems. Furthermore, the automatic code genera-
tion is a feature supported by the Atelier B tool , which allows the safe transformation from a
B-method implementation to software code. The refinement of B-method specifications have
been discussed for years in the literature and many different approaches have been already pre-
sented [15]. Besides, the automatic refinement methodologies have also been discussed [16].

In the LChIP Project, the generated source code is compiled and deployed on a Microchip
PIC32 MCU embedding two independent 32-bit MIPS processors. Each processor runs a
different version of the program generated by Atelier B using a different generation chain. In
normal behaviour of the RIS, both versions of the program give the same outputs for the same
inputs. The outputs of the RIS are the outputs of the programs. If the programs give different
outputs (for example, because of a hardware default), the RIS system is considered as faulty
and the global system, of which the RIS is part of, falls back to a safety position.

Such safety rule ensures a higher resilience to errors and hardware faults but does little
for protection against attacks. The methodology for the specification and implementation of
Relay-based RIS as safety-proved computer-controlled systems may increase the safety of
these systems, but it may also induce a vulnerability to attacks, which is a security problem.
To address that issue, the use of obfuscation techniques is discussed.

5 DISCUSSION ON SOFTWARE OBFUSCATION
Computer based RIS are vulnerable to reverse engineering and tampering by ill-intended
people. Binaries could be downloaded through physical access and disassembled, allowing
access to their source code. An ill-intended person could analyse the source code, modify it

Figure 4: Example of a state evolution.

 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020) 225

and install that modified version in the system, at best to disrupt the traffic, at worst to cause
accidents. As the LChIP project uses the well documented MIPS architecture for running
binaries, such task would not require much effort and resources. In order to prevent such
attacks, we consider code obfuscation: the transformation of programs into more complex
versions, harder to understand for possible attackers.

According to the definition of obfuscation by Collberg et al. [17, 18], obfuscating a pro-
gram does not change its observable behaviour. Observing an obfuscated program as a black
box does not allow its distinction from its non-obfuscated version. Such approach allows the
usage of obfuscation as it does not invalidate formal proofs on the non-obfuscated program.

Definition 5.1 (Obfuscating transformation). Let τ → ′ be a transformation of a
source program into a target program ′ .
 τ → ′ is an obfuscating transformation if, given the same inputs:

•	 If fails to terminate or terminates with an error, then ′ may or may not terminate
•	 Otherwise,	 ′ terminates and produces the same output as

In [17], Collberg et al. classified obfuscating transformations in three categories. Layout
transformations affect the source code of the program and make its understanding more dif-
ficult for human readers. A common layout transformation is variable scrambling: renaming

Figure 5: Examples of obfuscation transformations.

226 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020)

variables to meaningless sequences of characters, easily confused with each other. Control
transformations affect the control flow of the program, making its behaviour more complex.
A common control transformation is the insertion of dead code: useless code is inserted in
the program but never executed. Data transformations affect data structures used by the
program, introducing complexity. A common data transformation is the division of a variable
into two apparently independent variables. Figure 5 presents examples of applications of
variable scrambling, dead code insertion and variable division to an iterative function calcu-
lating the nth element of the Fibonacci sequence.

Quantifying the quality of an obfuscating transformation is a complex issue as it implies
quantifying the semantic complexity (i.e. how hard it is to understand) of a program, which is
subjective. Indeed, two different people may find a same program easy or difficult to under-
stand. Several metrics for semantic complexity are presented in the literature. For example,
harrison and al. [19] proposed measuring the nesting level of programs to measure their
complexity. Collberg et al. defined three measures on obfuscating transformation in order to
quantify their quality: Potency, Resilience and Cost. Each of these measures are calculated on
the application of a given transformation on a given program. Potency measures the gain of
semantic complexity when applying the transformation on the program. Resilience measures
the difficulty of reverse engineering the obfuscated program to retrieve its original version.
Cost measures the overhead introduced on the execution time of the program after applying
the transformation. Ideally, a good obfuscating transformation has a high resilience, a high
potency and a low cost. The quality of an obfuscating transformations cannot be measured as
such. The quality of an obfuscating transformation depends on the program it is applied to.
As a consequence, obfuscating a given program requires finding a sequence of obfuscating
transformations suited to that program: a sequence of transformations of high quality when
applied to the given program.

In the context of the LChIP project, programs must comply with safety regulations that
restrain programming techniques. As a consequence, some obfuscating techniques cannot be
used for computer based RIS. For example, the SIL4 regulation applies on the LChIP project
and forbids the usage of pointers in programs. As a consequence, obfuscating transformations
using pointer aliasing to obfuscate the control flow or the data flow of the program cannot
be used. Pertinence of obfuscation in the context of the LChIP project would depend on the
finding of high quality obfuscating transformations complying with safety regulations.

The step of the software production chain in which the program is obfuscated may have an
impact on the quality of the obfuscation. Some steps like the transformation of the B model
into source code or the compilation of the source code into an executable binary are based on
transformations. Common compilers not only translate source code into binaries, they also
apply transformations optimizing the program by, for example, reducing its execution time or
reducing its resources consumption. Such transformations alter the structure of the program
and may degrade the obfuscation of the program. While applying them early in the software
production chain is usually easier, obfuscating transformations should be applied as late as
possible to avoid interference by other transformations.

5.1 Tamper-proofing computer-based RIS

Obfuscation in itself does not protect programs from tampering. It makes the analysis of
the program more difficult and therefore may make the program more difficult to tamper
with. In the context of computer based RIS, expected outputs are specified and documented.

 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020) 227

Attackers managing to access the RIS documentation could use it to generate a rogue pro-
gram and cause accidents without needing to deobfuscate the original program. Even without
accessing the documentation, attackers may manage to deobfuscate the program with enough
time and resource. Indeed, obfuscation is never a definitive answer because deobfuscation
is always possible [20], although it may be highly time and resource consuming. To protect
computer based RIS, we discuss using obfuscation as a tool to tamper-proof programs.

Obfuscating transformations can be used to watermark and tamper-proof programs [21].
When watermarking a program, obfuscation is used to hide information inside the program
that can be retrieved later using a secret key. This technique can be used to prove intellectual
ownership of a program in the case of legal conflicts. One method for watermarking pro-
grams using obfuscation is to encode the watermark as a sequence of obfuscating transforma-
tions applied to the program. The secret key would be a function that extracts that sequence
of transformations from the obfuscated program. In the following example, τ τ0 ,..., n is the
watermark and is the secret key.

τ τ0 ,..., n

� ���� ����

 → ′ K P() = ,...,0′ τ τn

Several methods for tamper-proofing programs can be found in the literature. A common
method, used in most Linux distributions, checks a hash value or a RSA signature of the
binary. Another method presented by Aucsmith [22] encrypts the binary and decrypts it, piece
by piece, at execution time. Unfortunately, we could not find tamper-proofing methods that
could be directly applied in the context of the LChIP project. The execution platform would
not support a complex encryption/decryption process and hash value checking cannot be
done without potential attackers noticing the checking operations.

We discuss a tamper-proofing method using program watermarking. A watermark in the
form of a sequence of obfuscating techniques applied to the program is used as a proof of
authenticity. An external control system, connected to the deployed RIS, would regularly
apply the key function to the deployed binaries, verifying the presence of the watermark. If
the watermark is not detected in one program, the control system would request the global
system to fallback to a safety position, according to classical safety principles of intrinsic
safety. The chosen method for detecting the presence of the watermark is more difficult to
detect that regular hash checking. As a consequence the watermarking detection algorithm
could be embedded in each RIS for redundancy. Successful attacks on such systems need to
target the watermark checking system. By provoking false positive results, attackers could
install rogue programs in deployed RIS. This can be achieved either by hacking the control
system, either by producing rogue programs in which the watermark would be detected.
Such attack is called collision attack [23]. Embedding the checking algorithm inside each
deployed RIS would make attacks on the checking system difficult as it would require hack-
ing the external control system and the RIS on which the rogue program would be deployed.
Collision attacks on the key function should be difficult. Provided the watermark is made of
high quality obfuscating transformations, collisions should be rare. As previously stated in
this section, deobfuscation is always possible, which means our watermarking strategy is not
absolutely safe from potential attacks, although it increases the cost of these attacks. With
enough time and resources, attackers may be able to identify and reproduce the watermark
in order to generate a rogue program. To address that issue, the watermark and its checking
algorithm need to be regularly updated, as any critical software system should be. Another

228 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020)

possible attack would be hacking the external control system and provoke false negatives
for each deployed RIS. Discussing the protection of the external control system is out of the
scope of this paper.

6 CONCLUSION
As a way to alleviate the costs of production and maintenance of relay-based RIS and
improve their safety, a methodology for the formal specification, verification, refinement and
implementation of safety-proved computer-based RIS have been proposed by the LChIP
Project. This approach uses B-method and its supporting tools as a way to transform the
behavioural logic of existing relay-based RIS into computer-based systems that may be
executed in cheaper microchips. however, despite the safety improvements presented by
this work, the security of these systems may be a problem as they run in generic hardware
configurations.

This paper presents the last results published by the LChIP Project and a discussion about
its possible security problems. In order to prevent attackers from tampering with the RIS,
the paper also discusses the use of code obfuscation techniques. By definition, obfuscating
transformations increase the complexity of the program without invalidating the safety proof
achieved using formal methods. In this context, it is possible to deploy a program difficult
to understand by attackers and insert a watermark inside each generated program while pre-
venting attackers from detecting it. The paper proposes a decentralized architecture check-
ing the presence of that watermark to detect potentially tampered RIS that do not have the
watermark. Efficiency of that method depends on the possibility to find efficient obfuscating
transformations compliant with industrial safety standards.

As a future work, it is possible to implement the techniques discussed in this paper as
well as to make a deep analysis of the impact of using software obfuscation on the system
efficiency and security. Furthermore, it is also possible to use this work as basis in order to
develop a new refinement approach for B-method that includes software obfuscation strate-
gies as a way to develop safe and secure computer-based systems. The inclusion of software
obfuscation as a way to improve the security of formal specified RIS is a new study field and
literature still lacks any contribution about the subject.

ACKNOWLEDGMENTS
This work is supported by the LChIP Project and the results presented in this paper are a
product of the studies made in this project. We thank Clearsy LChIP team for sharing their
studies with us and we also thank SNCF for providing and allowing us to publish the relay
schema in this paper.

REFERENCES
 [1] hansen, K.M., Formalising railway interlocking systems. Nordic Seminar on

Dependable Computing Systems, Citeseer, pp. 83–94, 1998.
 [2] haxthausen, A.E., Le Bliguet, M. & Kjær, A.A., Modelling and verification of relay

interlocking systems. Monterey Workshop, Springer, pp. 141–153, 2008.
 [3] Akita, K., Watanabe, T., Nakamura, h. & Okumura, I., Computerized interlocking

system for railway signaling control: smile. IEEE Transactions on Industry Applications,
(3), pp. 826–834, 1985.

 Sébastien Martinez et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020) 229

 [4] Abrial, J.R., The B-Book: Assigning Programs to Meanings. Cambridge University
Press: New York and NY and USA, 1996.

 [5] Behm, P., Benoit, P., Faivre, A. & Meynadier, J.M., Meteor: a successful application
of b in a large project. International Symposium on Formal Methods, Springer, pp.
369–387, 1999.

 [6] Lecomte, T., Servat, T., Pouzancre, G. et al., Formal methods in safety-critical railway
systems. 10th Brasilian Symposium on Formal Methods, pp. 29–31, 2007.

 [7] Guiho, G. & hennebert, C., Sacem software validation. Software Engineering, 1990.
Proceedings., 12th International Conference on, IEEE, pp. 186–191, 1990.

 [8] Theeg, G., Railway signalling & interlocking international compendium. PMC Media
house Gmbh: Bingenhamburg, 2017.

 [9] Rétiveau, R., La signalisation ferroviaire. Presse de l’école nationale des Ponts et
Chaussées, 1987.

[10] de Almeida Pereira, D.I., Deharbe, D., Perin, M. & Bon, P., B-specification of relay-
based railway interlocking systems based on the propositional logic of the system state
evolution. International Conference on Reliability, Safety, and Security of Railway
Systems, Springer, pp. 242–258, 2019.

[11] Fantechi, A., Fokkink, W. & Morzenti, A., B-specification of relay-based railway
interlocking systems based on the propositional logic of the system state evolution.
Formal Methods for Industrial Critical Systems: A Survey of Applications, pp. 61–84,
2013.

[12] Schneider, S., The B-Method: An Introduction. Palgrave, 2001.
[13] Leuschel, M. & Butler, M., Prob: a model checker for b. International Symposium of

Formal Methods Europe, Springer, pp. 855–874, 2003.
[14] ClearSy, Atelier B User Manual, version 4.0. ClearSy System Engineering, Parc de la

Duranne	–	320	av.	Archimède	–	Les	Pléïades	III	Bat	A	–	13857	AIX	EN	PROVENCE	
CEDEX 3 – FRANCE.

[15] Sekerinski, E. & Sere, K., Program Development by Refinement: Case Studies Using
the B Method. Springer Science & Business Media, 2012.

[16] Burdy, L. & Meynadier, J.M., Automatic refinement. Proceedings of BUGM at FM, 99,
1999.

[17] Collberg, C., Thomborson, C. & Low, D., A taxonomy of obfuscating transformations.
http://wwwcsaucklandacnz/staff-cgi-bin/mjd/csTRcgipl?serial, 1997.

[18] Collberg, C. & Nagra, J., Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, 1st edition,
2009.

[19] harrison, W. & Kenneth, M., A complexity measure based on nesting level. ACM
SIGPLAN Notices, 16, pp. 63–74, 1981.

[20] Appel, A., Deobfuscation is in np, 2002.
[21] Collberg, C.S. & Thomborson, C., Watermarking, tamper-proofing, and obfuscation –

tools for software protection. IEEE Transactions on Software Engineering, 28(8), pp.
735–746, 2002.

[22] Aucsmith, D., Tamper resistant software: an implementation. Information Hiding, ed.
R. Anderson, Springer Berlin heidelberg: Berlin, heidelberg, pp. 317–333, 1996.

[23] Wang, X. & Yu, h., how to break md5 and other hash functions. Advances in Cryptology
– EUROCRYPT 2005, ed. R. Cramer, Springer Berlin heidelberg: Berlin, heidelberg,
pp. 19–35, 2005.

