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ABSTRACT
Railway interlocking systems (RIS) are responsible for the control of trains’ movements by allowing or 
denying their routing according to safety rules. Originally built as mechanical systems then as electrical 
mechanical systems, they are modelled as relay-based electrical circuit diagrams and checked manu-
ally. Even recent computer based RIS are still modelled as relay diagrams. Manual checking of safety in 
such a critical context is an issue that needs to be addressed by the railway domain. In this context, one 
of the objectives of the LChIP project is the development of computer-based RIS based on the formal 
specification of the RIS behaviour, which allows the generation of formally checked computer binaries 
by refinement. however, the produced binaries may be accessed and tampered with by ill-intended 
persons as computer code is easier to analyse and understand than electrical mechanical systems. In the 
context of the LChIP project, binaries are run on a Microchip PIC32 MCU embedding two independent 
32-bit MIPS processors. The choice of such generic architecture allows easier production and maintain-
ability, lower production costs and easier replacement in case of hardware failure. It also makes it easier 
to reverse engineer compiled software as the MIPS architecture is well documented and has a small 
instruction set. This paper presents how binaries can be obtained using the B-method formal language 
and it discusses the usage of software obfuscation as a way to ensure security of these binaries. Obfus-
cation transforms a piece of software to make it impossible to understand for potential attackers, while 
keeping its observable behaviour: obfuscated software give the same outputs for the same inputs as their 
unobfuscated counterparts. As the obfuscation transformations do not alter the behaviour of formally 
checked generated binaries in a way that would void the safety checking, it is possible to secure com-
puter based RIS and prevent ill-intended persons from tampering with them. 
Keywords: code obfuscation, formal methods, railway interlocking systems, safety, security.

1 INTRODUCTION
Railway interlocking systems (RIS) are responsible for controlling the trains’ movements in 
a determined track by allowing or denying their movements as a way to avoid the occurrence 
of hazardous situations, like collisions, for instance. As the occurrence of failures may cause 
severe consequences, these systems are considered as safety-critical, which requires advanced 
approaches in order to guarantee their safety. The first built RIS was purely mechanical, then 
it evolved to use new technologies, becoming electrical mechanical systems, relay-based sys-
tems and, more recently, computer-controlled systems [1]. Relay-based RIS are still used by 
many railway infrastructure managers, like SNCF (the French National Railway Company). 
The logic of these systems are implemented as electrical circuits containing relays, an elec-
trical component that may control the flux of electrical current inside the circuit. however, 
relay-based RIS are generally modelled by relay diagrams, whose informal error prone veri-
fication made by manually inspection may not guarantee the absence of errors [2]. Further-
more, as computer-based systems are easier to handle and maintain, cheaper and more flex-
ible to extend functions [3], the industry has interest on the creation of approaches in order to 
transform the existing relay-base systems into computer-based systems.
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In this context, the LChIP Project1 was founded with the objective of using formal meth-
odologies of specification in order to support the analysis, verification and code generation of 
RIS. The formal specification language used in this project is B-method [4], which has been 
successfully used in many railway projects, like [5], [6] and [7], and whose mathematical 
background and supporting tools allow the automatic safety proof and refinement in order 
to generate safety-proved computer-controlled systems. The generated code may then be 
installed on industrial micro-controllers embedding two processors as a way to support soft-
ware redundancy, allowing the code generated in two different refinement processes to run 
on both processors. If both executions give different results, these results are considered as 
errors and the system presents a different safe result instead. As micro-controllers are pro-
duced in industrial quantities, the production of a computer-based RIS tends to be cheaper 
than the production of its relay-based version.

however, using common technologies such as mass produced micro-controllers and com-
puter software has an issue: as the system gets easier to be accessed and understood, ill-
intended attackers may try to tamper with it, causing unexpected accidents or disrupting 
the traffic. Reducing the production costs generally also reduces the costs for attacking the 
system, causing security issues. Achieving safe and secure computer based systems requires 
raising the costs of attacks. Thus, by making programs more difficult to understand by human 
readers, code obfuscation could increase the costs of attacks on RIS. Deobfuscating a pro-
gram is a costly task that must be achieved in order to understand its semantic and to tamper 
with it. Moreover, code obfuscation allows specific strategies for protecting a program from 
tampering, even when attackers achieve understanding its semantics.

In this context, this paper presents some recent results in the LChIP Project regarding 
how the Relay-based RIS may be specified, safety-proved and refined in order to generate 
computer-controlled systems. Furthermore, the protection of generated code from attacks 
using code obfuscation as a way to avoid external unwelcome interference is also discussed. 
Section 2 introduces how industry models the relay-based RIS, which may be formally speci-
fied and safety proved according to the methodology presented in Section 3. Then, Section 4 
presents how models may be transformed into computer-based RIS through formal specifica-
tion refinement. The protection of these generated programs are then discussed in Section 5 
and the conclusion of this paper is presented in Section 6.

2 RELAY DIAGRAM MODELS
RIS are the part of the signalling systems responsible for the logic behind the control of the 
trains’ movements. The track-side sensors information is processed inside the RIS, which 
responds by controlling the signals and turnouts according to safety requirements [8]. In 
industry, these systems are implemented using some different technologies, like Relay-based 
or computer-controlled, being this last one the most recent [1]. Despite the existence of new 
technologies, many railway infrastructure managers still use relay-based electrical circuits in 
order to implement RIS. This is the case of the SNCF, for instance.

A Relay-based RIS is the implementation of the interlocking logic by the use of electrical 
circuits containing relays. A Relay is an electromechanical component that can control the 
flux of electrical current inside the system by changing contacts positions. In this context, 
a component is activated if it is directly or indirectly connected to a positive and a negative 
energy source as a way to allow a flux of electrical current inside it.

1 (Low Cost high Integrity Platform) https://www.clearsy.com/en/4260-2/https://www.clearsy.com/
en/4260-2/
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As electrical circuits, these systems are generally modelled as relay diagrams, which is 
a representation in a graph form of how the components are connected by electrical wires. 
As each railway company has its unique approach for modelling relay diagrams, this work 
focuses on the models used by SNCF. Table 1 presents some of the electrical components that 
may be used inside a relay diagram. A real industrial example is presented in Fig. 1. More 
details about the SNCF relay-based RIS. modelling approach may be found in [9].

A contact may be opened or closed as a way to block or allow, respectively, the flux of 
electrical current inside the wires. The contacts states are controlled by the relay states. A 
relay may be monostable or bistable. The former contains only one electromagnet that pulls 
or pushes the contacts against gravity when activated. In this case the contacts are placed 
horizontally in the physical system. A bistable relay contains two electromagnetic coils that 
pull the vertically positioned contacts to the left or right sides. The main difference between 
a monostable and a bistable relay is their contacts states when the electromagnetic coils are 
deactivated. When a monostable relay is deactivated, gravity makes the related monostable 
contacts to change their states. however, when both bistable relays coils are deactivated, 
gravity maintains the last state of the related bistable contacts.

The interaction between the system and the environment are made by the inputs and out-
puts. In this case, buttons and levers are the most known RIS interfaces. Similarly to contacts, 
they control the flux of the electrical current. however, their states are entirely controlled by 
the environment. In order to control the trains’ movements, the relay-based RIS outputs are 
generally the commands for the signals and turnouts to change their states. Thus, in order to 
guarantee the safety of these systems, one must assure that the signals and turnouts do not 
lead the system to a hazardous situation, like a collision, for instance.

Some components may require some intending time to be activated or deactivated. This 
timed behaviour is implemented by complex structures which are abstracted inside relay dia-
grams as blocks. A relay connected to a block may have its activation or deactivation delayed 
according to the type of the block and the time depicted inside it.

Table 1: Elements that may be used in a relay-based diagram.

Energy sources. 

A lever and a button, respectively. 

Monostable and bistable relays, respectively. 

Blocks for timed activation and deactivation, respectively. 

A monostable and a bistable contact, respectively. 
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3 FORMAL SPECIFICATION OF RELAY-BASED RIS
As a way to allow the formal specification of relay-based RIS, the use of B-method as a 
formal language has been proposed in a previous work [10]. B-method is considered as one 
of the strongest approaches for the specification of railway systems [11] and its success has 
been proved by its use in many industrial projects ( [5], [6], [7] ).

In B-method, the specification is divided into smaller building blocks: the abstract machines 
[12] . These machines are subdivided into clauses, each one containing some details about the 
specified system. Some of these clauses are:

•	 SETS,	containing	sets	of	constant	information;	
•	 VARIABLES,	which	defines	the	system	variables;	
•	 INVARIANT,	defining	the	variables	types	and	properties	that	must	be	met	during	the	sys-

tem	execution;	
•	 INITIALISATION	which	presents	the	initial	values	of	each	variable;	
•	 and	OPERATIONS,	describing	the	system	state	evolution.

Details about B-method syntax and semantics as well as its mathematical foundations may 
be found in [4].

In the context of this work, B-method supports the specification of the preconditions for 
each electrical component to be activated inside a relay-based RIS. Based on this behavioural 
specification, it is possible to analyse the impact of a component activation over the other 
components states and define safety properties that must be met during the system execution. 
Furthermore, the use of B-method supporting tools allows the animation and automatic safety 
proof of the system, as presented later in this section.

3.1 Relay-diagram behavioural logic

The relay-based RIS logic is based on the precondition for each component to be activated. 
The activation of a relay, for instance, changes the state of contacts related to it, which may 
allow the electrical current to flow in other wires, provoking the activation of other compo-
nents. The precondition for the activation of a component is presented in Definition 3.1.

Figure 1: Partial relay diagram of a solution for the ITCS problem [10].
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Definition 3.1. (Component Activation Precondition) An electrical component is activated 
if both of its wires are connected to a different pole (positive and negative) of energy sources 
in a way that allows the flow of electrical current inside the component. This means that all 
contacts, buttons and levers between the component and both poles of energy sources must 
be closed.

A component activates once there is an electrical current flux inside it. Following the same 
logic, it is possible to define a precondition of the deactivation of a component, as presented 
in Definition 3.2.

Definition 3.2. (Component Deactivation Precondition) An electrical component is deac-
tivated if its wires are not connected to different poles (positive and negative) of energy 
sources, preventing the flow of electrical current inside it. This means that at least one con-
tact, button or lever between the component and one pole of energy source must be opened 
(considering that there is no other connection to the same type of pole).

The activated and deactivated states of a monostable relay may be represented by means of 
binary values, where TRUE is for the activated and FALSE for the deactivated state. The state 
of a monostable relay changes as soon as the preconditions for this state is no longer met. 
Nonetheless, as a bistable relay states depend on the activation and deactivation of two differ-
ent coils, the representation of its states tends to be more complex. It is a known characteristic 
of relay-based systems that both coils of a bistable relay must never be activated at the same 
time. This component assumes a “right” state as soon as the right coil is activated and the left 
coil is deactivated. Following the same logic, this component assumes a “left” state when the 
left coil is activated and the right coil is deactivated. however, if both coils deactivate, the 
bistable relay has its last assumed state maintained by the gravity.

The contacts states depend exclusively on the relays states in a way that their behaviours 
may be completely abstract by their related relays states. Thus, the activation and deactiva-
tion of some components is a consequence of the relays states. Besides, levers and buttons 
may also impact the activation and the deactivation of components as they can also control 
the flux of electrical current inside the wires. Nevertheless, as these components are part of 
the system interface, they are controlled by the environment and they are treated as inputs for 
the definition of the system state.

The analysis of the RIS safety involves the study of the system outputs according to the 
given inputs. Output components may also be activated (TRUE) or deactivated (FALSE) and 
their states may indicate the permission for a train to continue its route. In the example pre-
sented in Fig. 1, the components EF11 and KIT C 911 are responsible for allowing two trains 
to enter in the same track in opposite directions. In this case, these outputs must be analysed 
in order to guarantee that they will never be activated at the same time, which could lead to 
a frontal collision between the trains. As a manual analysis may not be satisfactory in this 
safety-critical context, the specification of the relay-based RIS may provide a safety proof of 
the system based on mathematical foundations.

3.2  Relay-based logic specification in B-method

The relay-based RIS behaviour may be specified in B-method by defining the content of 
each clause of the B-machine. In the SETS clause one may define some special components 
states for levers or bistable relays. In our running example, for instance, it is defined the states 
POS_O and POS_F for the “right” and “left” states of the bistable relay EIT_C_CSS. The 
SETS clause of out running example is presented in Fig. 2.
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The state of relay-based RIS is defined by the specific state of each component. In a 
B-machine, the system state is defined by the state of each variable. Thus, in our method-
ology, each component of the relay-based RIS is defined as a variable of the B-machine. 
Nonetheless, as a way to simplify the specification without impacting on the system logic, it 
is possible to abstract the contacts, since their states may be easily deduced from their related 
relays during the system execution. Furthermore, as B-method supports the definition of 
inputs in the system execution description, the RIS inputs are not treated as variables. These 
specification decisions have no negative impact on the system safety verification, animation 
and analysis. In fact, the less amount of variables decrease the number of states and allows a 
faster and lighter verification.

The variables typing must be specified inside the INVARIANT clause. These types represent 
the possible states that the components may assume during the system execution. Relays and 
outputs, for instance, may be typed as Boolean, since they may assume the activated (TRUE) 
and deactivated (FALSE) states. Bistable relays must be typed according to the special types 
created in the SETS clause. Furthermore, it is also possible to define safety properties that 
must be met during the system execution inside the INVARIANT clause. For instance, as the 
components KIT_C_911 and EF11 may never be activated at the same time in our running 
example, this property may be defined as presented in Fig. 3.

The initial state of a relay-based RIS is the functional state depicted in the relay diagram 
itself. So, it is possible to define the initial state of the specified system in the INITIALISA-
TION clause according to the interpretation of the relay diagram. The specification of the 
initial state of our running example is presented in Fig. 3.

The system execution logic is specified in a B-machine inside the OPERATIONS clause. 
So, the state evolution of a RIS may be specified as a single operation that changes the com-
ponents states based on the inputs values given by the environment. A B-operation requires 

Figure	2:	 B-method	MACHINE,	SET	and	VARIABLES	clauses.

Figure	3:	 B-Machine	INVARIANT	and	INITIALISATION	clauses.
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the definition of a precondition where all the inputs must be typed. The logic for the complete 
system state evolution may be specified using the following notation:

<<variables>>:(<<variables typing>> & <<variables information>>) 

This expression allows the evolution of the system variables (<<variables>>) by inform-
ing their types (<<variables typing>>) and the conditions that the system must meet after 
the execution of this expression (<<variables information>>). In this approach, these condi-
tions are the precondition for each component to be activated or deactivated. In our running 
example, for instance, the precondition for the component KIT_C_CSS to be activated is 
represented inside Fig. 4.

3.3 Animation and verification

The ProB tool [13], allows not only the animation of the machines but also their specifica-
tion and model-checking. During the animation, the tool allows operations to be called and it 
always verifies if the machine state is valid according to the invariant. In this case, the ProB 
tool contains a model-checker providing a counter example when an invalid state is found.

4  BUILDING A COMPUTER-BASED RIS
The B-method allows the specification refinement and disposes of a set of logical conditions 
that can be verified in order to guarantee that the refined machine presents indeed the same 
behaviour as the more abstract one. Thus, this methodology allows the refinement of the speci-
fication in order to implement safety-proved systems. Furthermore, the automatic code genera-
tion is a feature supported by the Atelier B tool , which allows the safe transformation from a 
B-method implementation to software code. The refinement of B-method specifications have 
been discussed for years in the literature and many different approaches have been already pre-
sented [15]. Besides, the automatic refinement methodologies have also been discussed [16].

In the LChIP Project, the generated source code is compiled and deployed on a Microchip 
PIC32 MCU embedding two independent 32-bit MIPS processors. Each processor runs a 
different version of the program generated by Atelier B using a different generation chain. In 
normal behaviour of the RIS, both versions of the program give the same outputs for the same 
inputs. The outputs of the RIS are the outputs of the programs. If the programs give different 
outputs (for example, because of a hardware default), the RIS system is considered as faulty 
and the global system, of which the RIS is part of, falls back to a safety position.

Such safety rule ensures a higher resilience to errors and hardware faults but does little 
for protection against attacks. The methodology for the specification and implementation of 
Relay-based RIS as safety-proved computer-controlled systems may increase the safety of 
these systems, but it may also induce a vulnerability to attacks, which is a security problem. 
To address that issue, the use of obfuscation techniques is discussed.

5 DISCUSSION ON SOFTWARE OBFUSCATION
Computer based RIS are vulnerable to reverse engineering and tampering by ill-intended 
people. Binaries could be downloaded through physical access and disassembled, allowing 
access to their source code. An ill-intended person could analyse the source code, modify it 

Figure 4: Example of a state evolution.
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and install that modified version in the system, at best to disrupt the traffic, at worst to cause 
accidents. As the LChIP project uses the well documented MIPS architecture for running 
binaries, such task would not require much effort and resources. In order to prevent such 
attacks, we consider code obfuscation: the transformation of programs into more complex 
versions, harder to understand for possible attackers.

According to the definition of obfuscation by Collberg et al. [17, 18], obfuscating a pro-
gram does not change its observable behaviour. Observing an obfuscated program as a black 
box does not allow its distinction from its non-obfuscated version. Such approach allows the 
usage of obfuscation as it does not invalidate formal proofs on the non-obfuscated program.

Definition 5.1 (Obfuscating transformation). Let  τ → ′ be a transformation of a 
source program   into a target program ′ .
 τ → ′  is an obfuscating transformation if, given the same inputs:  

•	 If   fails to terminate or terminates with an error, then ′  may or may not terminate 
•	 Otherwise,	 ′  terminates and produces the same output as   

In [17], Collberg et al. classified obfuscating transformations in three categories. Layout 
transformations affect the source code of the program and make its understanding more dif-
ficult for human readers. A common layout transformation is variable scrambling: renaming 

Figure 5: Examples of obfuscation transformations.
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variables to meaningless sequences of characters, easily confused with each other. Control 
transformations affect the control flow of the program, making its behaviour more complex. 
A common control transformation is the insertion of dead code: useless code is inserted in 
the program but never executed. Data transformations affect data structures used by the 
program, introducing complexity. A common data transformation is the division of a variable 
into two apparently independent variables. Figure 5 presents examples of applications of 
variable scrambling, dead code insertion and variable division to an iterative function calcu-
lating the nth element of the Fibonacci sequence.

Quantifying the quality of an obfuscating transformation is a complex issue as it implies 
quantifying the semantic complexity (i.e. how hard it is to understand) of a program, which is 
subjective. Indeed, two different people may find a same program easy or difficult to under-
stand. Several metrics for semantic complexity are presented in the literature. For example, 
harrison and al. [19] proposed measuring the nesting level of programs to measure their 
complexity. Collberg et al. defined three measures on obfuscating transformation in order to 
quantify their quality: Potency, Resilience and Cost. Each of these measures are calculated on 
the application of a given transformation on a given program. Potency measures the gain of 
semantic complexity when applying the transformation on the program. Resilience measures 
the difficulty of reverse engineering the obfuscated program to retrieve its original version. 
Cost measures the overhead introduced on the execution time of the program after applying 
the transformation. Ideally, a good obfuscating transformation has a high resilience, a high 
potency and a low cost. The quality of an obfuscating transformations cannot be measured as 
such. The quality of an obfuscating transformation depends on the program it is applied to. 
As a consequence, obfuscating a given program requires finding a sequence of obfuscating 
transformations suited to that program: a sequence of transformations of high quality when 
applied to the given program.

In the context of the LChIP project, programs must comply with safety regulations that 
restrain programming techniques. As a consequence, some obfuscating techniques cannot be 
used for computer based RIS. For example, the SIL4 regulation applies on the LChIP project 
and forbids the usage of pointers in programs. As a consequence, obfuscating transformations 
using pointer aliasing to obfuscate the control flow or the data flow of the program cannot 
be used. Pertinence of obfuscation in the context of the LChIP project would depend on the 
finding of high quality obfuscating transformations complying with safety regulations.

The step of the software production chain in which the program is obfuscated may have an 
impact on the quality of the obfuscation. Some steps like the transformation of the B model 
into source code or the compilation of the source code into an executable binary are based on 
transformations. Common compilers not only translate source code into binaries, they also 
apply transformations optimizing the program by, for example, reducing its execution time or 
reducing its resources consumption. Such transformations alter the structure of the program 
and may degrade the obfuscation of the program. While applying them early in the software 
production chain is usually easier, obfuscating transformations should be applied as late as 
possible to avoid interference by other transformations.

5.1 Tamper-proofing computer-based RIS

Obfuscation in itself does not protect programs from tampering. It makes the analysis of 
the program more difficult and therefore may make the program more difficult to tamper 
with. In the context of computer based RIS, expected outputs are specified and documented. 
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Attackers managing to access the RIS documentation could use it to generate a rogue pro-
gram and cause accidents without needing to deobfuscate the original program. Even without 
accessing the documentation, attackers may manage to deobfuscate the program with enough 
time and resource. Indeed, obfuscation is never a definitive answer because deobfuscation 
is always possible [20], although it may be highly time and resource consuming. To protect 
computer based RIS, we discuss using obfuscation as a tool to tamper-proof programs.

Obfuscating transformations can be used to watermark and tamper-proof programs [21]. 
When watermarking a program, obfuscation is used to hide information inside the program 
that can be retrieved later using a secret key. This technique can be used to prove intellectual 
ownership of a program in the case of legal conflicts. One method for watermarking pro-
grams using obfuscation is to encode the watermark as a sequence of obfuscating transforma-
tions applied to the program. The secret key would be a function that extracts that sequence 
of transformations from the obfuscated program. In the following example, τ τ0 ,..., n  is the 
watermark and   is the secret key.

           
τ τ0 ,..., n

� ���� ����

 → ′   K P( ) = ,...,0′ τ τn

Several methods for tamper-proofing programs can be found in the literature. A common 
method, used in most Linux distributions, checks a hash value or a RSA signature of the 
binary. Another method presented by Aucsmith [22] encrypts the binary and decrypts it, piece 
by piece, at execution time. Unfortunately, we could not find tamper-proofing methods that 
could be directly applied in the context of the LChIP project. The execution platform would 
not support a complex encryption/decryption process and hash value checking cannot be 
done without potential attackers noticing the checking operations.

We discuss a tamper-proofing method using program watermarking. A watermark in the 
form of a sequence of obfuscating techniques applied to the program is used as a proof of 
authenticity. An external control system, connected to the deployed RIS, would regularly 
apply the key function to the deployed binaries, verifying the presence of the watermark. If 
the watermark is not detected in one program, the control system would request the global 
system to fallback to a safety position, according to classical safety principles of intrinsic 
safety. The chosen method for detecting the presence of the watermark is more difficult to 
detect that regular hash checking. As a consequence the watermarking detection algorithm 
could be embedded in each RIS for redundancy. Successful attacks on such systems need to 
target the watermark checking system. By provoking false positive results, attackers could 
install rogue programs in deployed RIS. This can be achieved either by hacking the control 
system, either by producing rogue programs in which the watermark would be detected.
Such attack is called collision attack [23]. Embedding the checking algorithm inside each 
deployed RIS would make attacks on the checking system difficult as it would require hack-
ing the external control system and the RIS on which the rogue program would be deployed. 
Collision attacks on the key function should be difficult. Provided the watermark is made of 
high quality obfuscating transformations, collisions should be rare. As previously stated in 
this section, deobfuscation is always possible, which means our watermarking strategy is not 
absolutely safe from potential attacks, although it increases the cost of these attacks. With 
enough time and resources, attackers may be able to identify and reproduce the watermark 
in order to generate a rogue program. To address that issue, the watermark and its checking 
algorithm need to be regularly updated, as any critical software system should be. Another 
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possible attack would be hacking the external control system and provoke false negatives 
for each deployed RIS. Discussing the protection of the external control system is out of the 
scope of this paper.

6 CONCLUSION
As a way to alleviate the costs of production and maintenance of relay-based RIS and 
improve their safety, a methodology for the formal specification, verification, refinement and 
implementation of safety-proved computer-based RIS have been proposed by the LChIP 
Project. This approach uses B-method and its supporting tools as a way to transform the 
behavioural logic of existing relay-based RIS into computer-based systems that may be 
executed in cheaper microchips. however, despite the safety improvements presented by 
this work, the security of these systems may be a problem as they run in generic hardware 
configurations.

This paper presents the last results published by the LChIP Project and a discussion about 
its possible security problems. In order to prevent attackers from tampering with the RIS, 
the paper also discusses the use of code obfuscation techniques. By definition, obfuscating 
transformations increase the complexity of the program without invalidating the safety proof 
achieved using formal methods. In this context, it is possible to deploy a program difficult 
to understand by attackers and insert a watermark inside each generated program while pre-
venting attackers from detecting it. The paper proposes a decentralized architecture check-
ing the presence of that watermark to detect potentially tampered RIS that do not have the 
watermark. Efficiency of that method depends on the possibility to find efficient obfuscating 
transformations compliant with industrial safety standards.

As a future work, it is possible to implement the techniques discussed in this paper as 
well as to make a deep analysis of the impact of using software obfuscation on the system 
efficiency and security. Furthermore, it is also possible to use this work as basis in order to 
develop a new refinement approach for B-method that includes software obfuscation strate-
gies as a way to develop safe and secure computer-based systems. The inclusion of software 
obfuscation as a way to improve the security of formal specified RIS is a new study field and 
literature still lacks any contribution about the subject.
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